Publications
2025
- Dandage, R., Papkov, M., Greco, B.M., Fishman, D., Friesen, H., Wang, K., Styles, E., Kraus, O., Grys, B., Boone, C. and Andrews, B., 2023. Single-cell imaging of protein dynamics of paralogs reveals mechanisms of gene retention. bioRxiv.
- Zabolotnii, D., Fishman, D. and Muhammad, N., 2025, February. Automatic Road Boundaries Extraction for High Definition Maps. In 2025 International Conference for Artificial Intelligence, Applications, Innovation and Ethics (AI2E) (pp. 1-6). IEEE.
- Prytula, Y., Tsiporenko, I., Zeynalli, A. and Fishman, D., 2025. IAUNet: Instance-Aware U-Net. In Proceedings of the Computer Vision and Pattern Recognition Conference (pp. 4739-4748).
- Tsiporenko, I., Chizhov, P. and Fishman, D., 2025. Going beyond u-net: Assessing vision transformers for semantic segmentation in microscopy image analysis. In European Conference on Computer Vision (pp. 222-238). Springer, Cham.
2024
- Shvetsov, D., Ariva, J., Domnich, M., Vicente, R. and Fishman, D., 2024, July. COIN: Counterfactual inpainting for weakly supervised semantic segmentation for medical images. In World Conference on Explainable Artificial Intelligence (pp. 39-59). Cham: Springer Nature Switzerland.
2023
- Plutenko, I., Papkov, M., Palo, K., Parts, L. and Fishman, D., 2023, October. Metadata Improves Segmentation Through Multitasking Elicitation. In MICCAI Workshop on Domain Adaptation and Representation Transfer (pp. 147-155). Cham: Springer Nature Switzerland.
- Kokol, M., Romano, A., Werner, E., Smrkolj, Š., Roškar, L., Pirš, B., Semczuk, A., Kaminska, A., Adamiak-Godlewska, A., Fishman, D. and Vilo, J., 2023. # 383 BioEndoCar: identifying candidate biomarkers for diagnosis and prognosis of endometrial carcinoma using machine learning and artificial intelligence. International Journal of Gynecological Cancer, 33, p.A368.
- Romano, A., Rižner, T.L., Werner, H.M.J., Semczuk, A., Lowy, C., Schröder, C., Griesbeck, A., Adamski, J., Fishman, D. and Tokarz, J., 2023. Endometrial cancer diagnostic and prognostic algorithms based on proteomics, metabolomics, and clinical data: a systematic review. Frontiers in Oncology, 13, p.1120178.
- Oja, K.T., Ilisson, M., Reinson, K., Muru, K., Reimand, T., Peterson, H., Fishman, D., Esko, T., Haller, T., Kronberg, J. and Wojcik, M.H., 2023. Untargeted metabolomics profiling in pediatric patients and adult populations indicates a connection between lipid imbalance and epilepsy. medRxiv.
- Kaliuzhnyi, D., Fishman, D. and Papkov, M., 2023. Reducing the Effect of Incomplete Annotations in Object Detection for Histopathology.
2022
- Ali, M.A., Hollo, K., Laasfeld, T., Torp, J., Tahk, M.J., Rinken, A., Palo, K., Parts, L. and Fishman, D., 2022. ArtSeg—Artifact segmentation and removal in brightfield cell microscopy images without manual pixel-level annotations. Scientific Reports, 12(1), p.11404.
- Tahk, M.J., Torp, J., Ali, M.A., Fishman, D., Parts, L., Grätz, L., Müller, C., Keller, M., Veiksina, S., Laasfeld, T. and Rinken, A., 2022. Live-cell microscopy or fluorescence anisotropy with budded baculoviruses—which way to go with measuring ligand binding to M4 muscarinic receptors?. Open Biology, 12(6), p.220019.
2021
- Ali, M.A., Misko, O., Salumaa, S.O., Papkov, M., Palo, K., Fishman, D. and Parts, L., 2021. Evaluating very deep convolutional neural networks for nucleus segmentation from brightfield cell microscopy images. SLAS DISCOVERY: Advancing the Science of Drug Discovery, 26(9), pp.1125-1137.
- Fishman, D., Salumaa, S.O., Majoral, D., Laasfeld, T., Peel, S., Wildenhain, J., Schreiner, A., Palo, K. and Parts, L., 2021. Practical segmentation of nuclei in brightfield cell images with neural networks trained on fluorescently labelled samples. Journal of Microscopy, 284(1), pp.12-24.
- Walsh, I., Fishman, D., Garcia-Gasulla, D., Titma, T., Pollastri, G., Harrow, J., Psomopoulos, F.E. and Tosatto, S.C., 2021. DOME: recommendations for supervised machine learning validation in biology. Nature methods, 18(10), pp.1122-1127.
- Papkov, M., Roberts, K., Madissoon, L.A., Shilts, J., Bayraktar, O., Fishman, D., Palo, K. and Parts, L., 2021. Noise2Stack: improving image restoration by learning from volumetric data. In Machine Learning for Medical Image Reconstruction: 4th International Workshop, MLMIR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, October 1, 2021, Proceedings 4 (pp. 99-108). Springer International Publishing.
2020
- Tampuu, A., Matiisen, T., Semikin, M., Fishman, D. and Muhammad, N., 2020. A survey of end-to-end driving: Architectures and training methods. IEEE Transactions on Neural Networks and Learning Systems, 33(4), pp.1364-1384.
- Fishman, D., Kuzmin, I., Adler, P., Vilo, J. and Peterson, H., 2020. PAWER: protein array web exploreR. BMC bioinformatics, 21, pp.1-8.
2019
- Knific, T., Fishman, D., Vogler, A., Gstöttner, M., Wenzl, R., Peterson, H. and Rižner, T.L., 2019. Multiplex analysis of 40 cytokines do not allow separation between endometriosis patients and controls. Scientific reports, 9(1), p.16738.
- Hertel, C., Fishman, D., Lorenc, A., Ranki, A., Krohn, K., Peterson, P., Kisand, K. and Hayday, A., 2019. Response to comment on’AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies’. Elife, 8, p.e45826.
2017
- Ottas, A., Fishman, D., Okas, T.L., Püssa, T., Toomik, P., Märtson, A., Kingo, K. and Soomets, U., 2017. Blood serum metabolome of atopic dermatitis: Altered energy cycle and the markers of systemic inflammation. PLoS One, 12(11), p.e0188580.
- Jones, W., Alasoo, K., Fishman, D. and Parts, L., 2017. Computational biology: deep learning. Emerging Topics in Life Sciences, 1(3), pp.257-274.
- Ottas, A., Fishman, D., Okas, T.L., Kingo, K. and Soomets, U., 2017. The metabolic analysis of psoriasis identifies the associated metabolites while providing computational models for the monitoring of the disease. Archives of dermatological research, 309, pp.519-528.
- Fishman, D., Kisand, K., Hertel, C., Rothe, M., Remm, A., Pihlap, M., Adler, P., Vilo, J., Peet, A., Meloni, A. and Podkrajsek, K.T., 2017. Autoantibody repertoire in APECED patients targets two distinct subgroups of proteins. Frontiers in immunology, 8, p.976.
2016
- Meyer, S., Woodward, M., Hertel, C., Vlaicu, P., Haque, Y., Kärner, J., Macagno, A., Onuoha, S.C., Fishman, D., Peterson, H. and Metsküla, K., 2016. AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies. Cell, 166(3), pp.582-595.
- Meyer, S., Woodward, M., Hertel, C., Vlaicu, P., Haque, Y., Kärner, J., Macagno, A., Onuoha, S.C., Fishman, D. and Peterson, H., APECED patient collaborative. 2016. AIRE-deficient patients harbor unique high-affinity disease-ameliorating autoantibodies. Cell, 166, pp.582-595.